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unstable, being susceptible to aerial oxidation. We therefore chose to investigate N-acylated derivatives.
Treatment of the wiazolo-compound (1) with hydrazine led rapidly to the parent N4-amino-derivative (Scheme 1),
which was then treated with acetic anhydride in pyridine, without purification of the intermediate. After overnight
acetylation it was observed that two products were formed, the minor product increasing with time (or
temperature). The major product was identified as being the desired N4-acetylamino-dcrivative (2) from its 1H-
nmr spectrum.? This compound also demonstrated the expected amide bond rotamers, the nmr signals coalescing
at temperatures above 80°C. The second product was not readily characterised: the 1H-nmr spectrum lacked the

exchangeable protons present in (2), its uv spectrum was different and the mass spectrum showed a mass

roduct as being the cyclised
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triazolopyrimidinone. We have demonstrated that cyclisation of 2 occurs with acid catalysis, the best catalyst we
found to be pyridinium hydrochloride in pyridine, though the reaction does occur with other acid catalysts which,
however, also give rise to hydrolysis products.

When the cyclised product was deacylated with sodium methoxide, the product obtained had a different uv
spectrum from its starting material, though the mass spectrum and 1H-nmr spectrum were consistent with only
loss of the two acetyl groups.® We suspected therefore that 3 had undergone a rearrangement during the

deprotection, possibly to the isomeric 4 (R=H). Amination? of 3',5'-diacetyl-5-methyl-2'-deoxycytidine (5)
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anhydride led to the triazolopyrimidinone (4, R=Ac), identified
derived from 4, R=H, (Scheme 2). Interestingiy, treatment of the acetyiamido derivative Z with methoxide did
not lead to a cyclisation or to the rearranged product, showing that in this case the open chain amido system 2

0040-4039/98/$19.00 © 1998 Elsevier Science Ltd. All rights reserved.
PII: S0040-4039(98)00634-0



3866

Scheme 1

N N~
Me L e Me_(( L e
Y Ty Y

ii) Ac,0 \_/
OAc OAc OAc
1 2 3
Figure 1
. (i 3 . g A
Y A S R A 2 e
M - @mz) '!”
cuo %
ORTEP plot of the cyclised product 3.
Scheme 2
Me,
>/\N NH,* NH,
N\ \ Me HZN\ Me I Me
NaQMe N/\.l/ N/\/ N/\/
S S O e
A\, AN,
MeOH (0] N



cannot rearrange under basic conditions. This is in distinction to the many amidine intermediates observed in
other Dimroth type rearrangements.

Several groups have reported the synthesis of 1,2,4-triazolo[4,3-c]pyrimidines,” 10 though generally these
methods did not allow the isolation of the acylated intermediate. Brown and co-workers!0.11 have examined in
some detail the rearrangement of a number of 1,2,4-triazolopyrimidines, though this work has been only carried
out on the free bases and not on N1-substituted derivatives such as nucleosides. They observed that the
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obtained was not the Dimroth rearranged 1,2,4-triazolo[1,5-c]pyrimidinone (4, R=Ac) analogous to that obtained
by him, but the cyclised product 3. This strongly suggests that when the reaction is carried out on the free base
that the N1-proton is required for the Dimroth rearrangement to occur, and that it may go via an intermediate such
as the isocyanate derivative 10. When the N l-proton is not present as is the case with nucleoside derivatives then
the Dimroth reaction cannot occur under these conditions.

The rearrangement of triazolopyrimidines (as opposed to pyrimidinones) as described by Brown cannot
apply in the case of the rearrangements observed for the nucleoside 3 because in the former case it involves
cleavage of the C3-C4 bond resulting, in some cases, in stable open chain ketone intermediates. In our case
cleavage must occur between N3-C2 and we assume via an ester intermediate. The methoxide rearrangement
(3—4) is almost instantaneous in 0.1M sodium methoxide solution, but when carried out in 10-4M methoxide
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therefore that no stabie intermediate accumulates. In ethanol with sodium ethoxide the rate of rearrangement is
only reduced by a factor of 2, and there is no reaction in pyrldmc. When the reaction was carried out using
sodium hydroxide (0.1M) in water then the rearrangement does not occur and the product formed is the
deacetylated derivative of 3, together with degradation products, and this is consistent with our mechanism as the
intermediate would have to involve a carboxylate anion which is unlikely to recyclise. The rearrangement, ought
in principle to be reversible, but we have been unable to demonstrate this.

We believe therefore that we have demonstrated a novel series of reactions for N4-acylamino-2'-
ment reaction must proceed by a different route to that described previously

for N4-ammocytosmcs.
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